DPUP :
A DISTRIBUTED PROCESSING
UTILITIES PACKAGE

Timothy J. Gardner
Isabelle M. Gerard
Carla R. Mowers
Evi Nemeth
Robert B. Schnabel

CS-CU-337-86 July 1986

Department of Computer Science
Campus Box 430

University of Colorado,

Boulder, Colorado, 80309

Research supported by AFOSR grant AFOSR-85-0251, ARO contract DAAG 29-
84-K-0140, NSF cooperative agreement DCR-8420944, and Sun Microsystems, Inc.

Abstract

DPUP is a library of utilities that support distributed concurrent computing on a local
area network of computers. The library is built upon the interprocess communication facilities
in Berkeley Unix 4.2bsd. Thus it will run on any network, connected by an Ethernet, where
each computer runs a version of the Unix operating system that supports the Berkeley Unix
interprocess communication facilities. DPUP supports two models of distributed concurrent
computation, a master-slave model based upon stream sockets, and a broadcast model based
upon datagram sockets. With each model, facilities for creating and terminating remote
processes, establishing communications between them, and sending and receiving data between
these processes are provided. This paper describes the facilities provided in DPUP and gives

examples of their use.

1. Introduction

This paper describes a library of utilities that support distributed concurrent computing
on a local area network of computers. The library is built upon the interprocess communica-
tion facilities in Berkeley Unix 4.2bsd. Thus it will run on any network of computers where
each machine runs a version of the Unix operating system that supports the Berkeley Unix
interprocess communication facilities. The library is called DPUP for Distributed Processing
Utilities Package. It is written in C and can be used by C or FORTRAN applications pro-

grams.

The purpose of DPUP is to make it easier to use a local area network of computers as a
loosely coupled multiprocessor. It is clear that networks of computers, especially computer
workstations, are becoming an increasingly common computing environment in industry and
research laboratories. It is inevitable that some users of these networks will want to utilize a
number of computers simultaneously, as a loosely coupled multiprocessor, to solve a single
problem. This may be especially appropriate during non-peak hours when many machines are

idle and large jobs, such as number crunching, need to be run.

The premise for the use of a network of computers as a loosely coupled multiprocessor is
that important, expensive problems can make effective use of this parallel computing environ-
ment. This appears to be the case. In particular, it appears that many important problems in
numerical computation can be effectively solved by coarse grain parallel algorithms that
predominately involve independent concurrent processing and require only a small amount of
interprocess communication, shared data, and process creation and termination. Examples of
such problems include problems from optimization, VLSI design, and differential equations (see
e.g. Feijoo and Meyer [1984], McBryan and Van de Velde [1985], Schnabel [1985], Seitz [1985]).
Thus, many problems appear well suited for concurrent implementation in a loosely coupled
parallel computing environment, such as a network of computers, where interprocess communi-

cation is considerably slower than each processor's computation speed.

In order to effectively use a network of computers as a loosely coupled multiprocessor, it
is necessary to have support for interprocess communication, and software that makes distri-
buted, concurrent programs easy to write. Several major projects, all initiated before the
release of Berkeley Unix 4.2, have provided this sort of support. They include the Crystal pro-
ject at the University of Wisconsin (Cook et al [L983a, b]), the Locus project at UCLA (Popek
et al [1981], Walker et al [1983]), the Eden project at the University of Washington (Lazowska
et al [1981], Almes et al [1985]), the Spice project at Carnegie-Mellon University, and several
projects at Xerox PARC (Birrell et al [1981], Shoch and Hupp [1982]). In contrast, DPUP is a
far simpler system that builds upon the interprocess communication primitives in Berkeley

Unix 4.2.

The 4.2 release of the Berkeley Unix operating system was the first major operating sys-
tem to provide networking support for commercially available hardware devices. It includes a
library of low level interprocess communication primitives and a kernel implmentation of the
TCP/IP protocol. The fundamental abstracton provided is the socket, a generalization of the
Unix pipe. There are two types of sockets: the stream socket, a reliable communication
medium between two processes (on the same or different machines) based upon the TCP proto-
col, and the datagram socket, which can broadcast to an arbitrary number of processes, using
the UDP protocol. The stream socket provides a flow controlled byte stream which is
guaranteed to be reliable, in that data will be delivered without error or duplication in the
order that it is sent. The datagram socket is not guaranteed to be reliable although practice

has shown that usually it is.

To write distributed concurrent programs, it is desirable to have higher level operations
than the ones provided in Berkeley Unix. Obvious desirable features include the ability to
easily create remote processes and establish communication paths between them, the ability to
signal or kill remote processes, and the ability to send and receive data between processes

easily. More sophisticated features would include update protocols on data that is sent

between processes, and features that facilitate the debugging and testing of distributed con-

current programs.

The DPUP system provides such facilities at a fairly basic level. In conjunction, it pro-
vides two models of distributed computation. These are a master/slave model based upon
stream sockets, and a broadcast model based upon datagram sockets. In both models, basic
operations for initiating and terminating remote processes, and sending and receiving data
between these processes, are supported. Some simple update protocols for communicated data
are provided. Only very rudimentary debugging support (beyond the standard Unix support

such as DBX) is included.

An advantage of the simple approach taken in DPUP is that the system is portable to
any Berkeley Unix 4.2 (or equivalent) environment. At the University of Colorado, DPUP has
been used on networks of Sun workstations (Sun-2’s or 3’s), on Vaxes, on Pyramids, and
between various combinatiohs of these machines. The concurrent distributed algorithms that
have been implemented using DPUP are in areas including global optimization (Byrd et al
[1986]), discrete optimization (Trienekens [1986]), VLSI design (Moceyunas [1986]), and solving
systems of equations. The DPUP system also has been ported to many other machines includ-
ing Apollo, Celerity, Gould, ISI, Masscomp, MicroVax, and Symmetric, and the Sequent mul-
tiprocessor. A second, more sophisticated system built at the University of Colorado, which is
not portable because it includes kernel modifications to support shared memory, is described in
Harter and Maybee [1985]. Other systems that support the use of a network of computers for
distributed concurrent computation include Carriero and Gelernter [1986], Cooper [1982], Su et

al [1985], and Theimer et al [1985].

The remainder of this paper describes the facilities provided in DPUP and gives examples
of their use. Section 2 describes the two models of computation, point to point and broadcast,

supported in DPUP. In Sections 3 and 4 we discuss the utilities DPUP provides along with each

of these models of computation. Section 5 briefly summarizes experience at the University of
Colorado using DPUP to implement and test distributed concurrent applications. A simple
example of a distributed concurrent computation coded in both the point to point and broad-

cast modes is given in Appendix A.

Additional information about the DPUP system, including detailed descriptions of the

DPUP functions, sample programs, and the DPUP source code, is available from the authors.

2. Models of Computation

The DPUP System is primarily intended to support two models of distributed concurrent
computation. The first is a master/slave model and uses point to point communications based
upon stream sockets. The second is a broadcast model based upon the datagram sockets. This
section briefly describes these two models, their advantages and disadvantages, and the sys-
tems architectures underlying them. While it is possible to construct other distributed compu-
tation environments using DPUP, for example by combining the point to point and broadcast

facilities, we do not discuss such possibilities in any detail.

The master/slave model is a simple model of concurrent computation. The computation
is organized around one master process which creates an almost arbitrary number of slaves.
Each slave is connected (via a stream socket) to the master, and any communication between
slaves is done through the master. Actually, it is possible, using DPUP, for any slave process
itself to act as a submaster and create its slaves, so that an arbitrary tree structure is possi-
ble. The distributed applications that have used DPUP have not used this generality and it is

not discussed further here.

A high level diagram of the architecture underlying the DPUP master/slave model is

given in Figure 2.1.

Each machine that is a part of the distributed computation has a server process, called
dp_server. Slave processes are created by the master as children of the dp_server process on
the remote host. Point to point communication paths then are created directly between the

master process and the slave, so that subsequent communication bypasses the dp_server.

The master/slave model is appropriate for many distributed concurrent computations. [t
is simple to understand and use, and for many applications the centralized control mirrors the
natural structure of the parallel algorithm. All the distributed applications projects at the
University of Colorado mentioned in Section 1, in optimization, VLSI design, and other areas,

have used this model.

The master/slave model has several disadvantages, however. The main disadvantage is
that in parallel algorithms where direct communication between slaves (as opposed to com-
munication between a slave and the controlling process) is involved, requiring all communica-
tion to go through the master is unnecessary and may create a bottleneck. In particular, in
applications where neighboring processes need to communicate, or in applications where each
process needs to send data to all processes, the master/slave model may be inefficient. Another
disadvantage is that various operating system constraints usually limit the number of point to
point connections (file descriptors) per process, so that the master/slave model doesn’t scale up
indefinitely. Finally, using the master/slave model usually results in a certain degree of syn-
chronization between the slaves and the master, which inevitably causes the slaves to be idle
at times in an environment where interprocessor communication is slow. For some parallel
algorithms, such as the chaotic relaxation method for solving systems of linear equations which
is used as our example in Appendix A, this synchronization is unnecessary because it is not crit-
ical that all processes have up-to-date values of all distributed shared variables at all times.
Thus using the master/slave model may introduce needless inefficiencies into distributed imple-

mentation of such algorithms.

Figure

b}

i

.1 Point-to-Point Model

Figure 2.2 Broadcast Model

Processor 1

Dp_server

Bec_server

Mascer Process

Slave Processes
[nitiator Process
Colleaque Processes
Broadcast Medium
(Datagram Socket Port)

Stream Socket
Parent/Child Fork

Datagram Socket

The broadcast model supported by DPUP provides an alternative to the master/slave
model that is especially suited to loosely coupled asynchronous algorithms. The model assumes
that all processes are equal, with no master process. (It often is convenient to have a control
process to initiate the distributed algorithm, monitor its progress, and decide when to ter-
minate it. However this control process doesn’t relay messages between the other processes as
is the case in the master/slave.) In the simplest use of the broadcast model, all processes can
be thought to be connected on one common communications path, and whenever one process
sends a message, all the other processes hear and receive it. Actually, it is possible to have

communications between subgroups of processes as well.

A high level diagram of the architecture underlying the broadcast model is given in Fig-
ure 2.2. Notice that each computer that is part of the distributed computation now has two
servers, the dp_server used in the master/slave model and a broadcast server, called bc_server.
The dp_server is used to create processes and help connect them properly to the broadcast sys-
tem. The broadcast server handles all the broadcast communication for that node. It contains
copies of all the variables that are shared through the broadcast system (called "broadcast
variables"); the application processes contain their own copies of the broadcast variables as
well. Whenever data is broadcast, it is received by the bc_server (and not directly by the
applications processes). The application processes then query their bc_server when they are
interested in the values of their broadcast variables. When broadcast data is sent by an appli-
cation process, it goes directly to the datagram socket (bypassing its own bc_server), to be
received by all bc_servers including its own. There are facilities in the broadcast system for
multiple applications to simultaneously use the broadcast system, and for multiple broadcast

groups to exist within a single application. These are described in more detail in Section 4.

When using the broadcast system, it is possible that all application processes may not
contain up-to-date values of all broadcast variables at any given time. [t is also possible that

a given update of broadcast variables may never reach one or more bc_servers (and hence all

application processes on their computers) due either to the unreliable nature of the datagram
socket or to the prototypical implementation of the DPUP broadcast system. In particular,
the DPUP broadcast system sometimes discards messages if several messages are sent in close
succession. In the applications for which the broadcast system is primarily intended, this
should not be a problem. The main application of the broadcast system should be for coarse
grain parallel algorithms where interprocessor communication is infrequent. In our experience,
such algorithms rarely lose broadcast messages. Furthermore, many such applications are
iterative and if a message is lost, this does not seriously affect the overall efficiency of the cal-
culation. The iterative calculation proceeds using some out of date values, and eventually

these are updated by newer values of the same variables.

3. Point-to-Point Facilities

The point to point facilities in DPUP establish direct communication paths between pairs
of processes on distinct (or the same) computers. Generally, they are used to organize a distri-
buted computation in a master/slave hierarchy as discussed in Section 2. In addition, slave
processes may act as submasters and spawn their own slaves, so that an arbitrary tree struc-
ture is possible. In fact, it is possible to establish communication paths between any pair of

processes, thereby enabling the implementation of any communications network.

The DPUP point to point functions are:

dp_create_proc create a process

dp_rmt_setup start up a remote process

dp_read read data

dp_write send data

dp_kill_proc kill a process

dp_sig_proc signal a process

dp_status display status information
dp_close_proc close a socket in the master process

dp_rmt_exit exit a remote process

10

This section outlines the capabilities and use of these functions. More detailed informa-
tion is contained in the Unix manual pages for the DPUP functions which are available from

the authors.

3.1 Using The System

Each computer in the distributed computation must contain a server process, called
dp_server. This server is used by the master process to create processes on remote machines,

and to establish communications directly between the master and slaves.

Before a user program can create a process on a remote host, dp_server must be started
on the remote host. The dp_server uses a hardwired service port number, usually assigned by
the system administrator and placed in the /etc/services file to support the entire DPUP
library. An identical DPUP service port entry should exist in the /etc/services file on every
machine that intends to run the dp_server. This server should be started in the background on
each of the machines to be used by a distributed concurrent program. This is usually done by
adding a line to the file /etc/rc.local that is executed at boot time. dp_server, when running,

listens for service requests from user programs on any of the participating machines.

In order to access the DPUP data structures, the applications program must include the
file dpup_user.h which usually resides in the /usr/local/include directory. In addition, the
application program needs to be linked with the library libdpup_funs.a. This usually resides in

Jusr/local/lib and is accessed by adding the flag -ldpup_funs to the compile command line.

3.2 Remote Process Creation

Remote processes are created using the function call:

proc_fd = dp_create_proc(r_stat, host, proc, args, 0);

where the process proc with arguments args is started on host. r_stat is a pointer to a data

11

structure that is filled by the create function with status information about the process
created. The dp_create_proc function call returns the file descriptor of a bidirectional pipe for
communication with the remote process. In the case of an error, the value —1 is returned. An
error will occur if the dp_server process is not running on the remote host or if the file proc

does not exist or cannot be executed on the remote host.

The above example is the simplest form of the dp_create_proc function. Actually the
arguments host, proc, args each can be arrays of equal size. In this case the arrays contain
pointers to a list of possible hosts, the corresponding process to start on each host, and the
arguments to pass to each process. The call then determines the least utilized machine among
the entries in the host array, utilizing the Unix load average information, and creates the
corresponding process from the array proc there. This primitive form of load balancing can be
used, if the number of processes is much larger than the number of processors, to attempt an

equitable scheduling of resources.

3.3 Remote Process Startup

Using the dp_create_proc function causes a remote process to be executed, but does not
connect that process to the calling program. To complete this connection the dp_rmi_setup
function is used. dp_rmt_setup should be the first statement executed by the remote process, as

follows:

create_fd = dp_rmt_setup (&arge, argv)

The call returns a file descriptor of a bidirectional pipe that connects to the creator process.
The arguments arge, and argv are the same arguments provided to a main C program. Thus
the remote process must define argc and argv even if it does not intend to use them, because

dp_create_proc uses them to pass along the process identification handle.

3.4 Data Transfer

Data transfer can be accomplished in a number of ways. In addition to the Berkeley Unix

system calls:

write(fd, buf, data_size);
read(fd, buf, data_size);
send(fd, buf, data_size, flags);
recv(fd, buf, data_size, flags);

the DPUP functions dp_write and dp_read may also be used:

dp_write(fd, buf, data_size);
dp_read(fd, buf, data_size, block_flag);

The advantages of the DPUP functions over the system functions are that dp_read allows the

user to specify that the read should block until data_size bytes of data have been returned or

to specify that dp_read should return immediately with only the data currently available.

Due to the way the DPUP data transfer functions are implemented, it is not possible to
send data with a system function and receive the data with a DPUP function, for example, it is

not possible to use dp_read to receive data sent using send.

An additional method of data transfer is by way of the broadcast facilities. These are

discussed in Secticn 4.

3.5 Remote Process Signaling
A master process may send signals to remote processes using the function call:
dp_sig_proc(r_stat, sig);

This function sends the signal sig to the remote process identified by r_stat. The function call:

dp_kill_proc(r_stat);

is a special form of dp_sig_proc that sends the KILL signal to the remote process identified by
r_stat. This function provides the master process a convenient method of terminating remote

processes and should be used to clean up after a distributed program is finished to prevent

"zombie" processes.

3.6 Remote Exit

At the end of execution the remote process should exit using:

dp_rmt_exit()

This function will make a clean exit of the remote process, ie. sockets and file descriptors are

closed properly.

3.7 Close Master Sockets

It sometimes is necessary for the master process to close sockets to slaves that have
exited, in order not to exceed the system imposeed limit on file descriptors.

To accomplish this the master calls:

dp_close_sock(proc_fd)

This should only be done when communication with the remote process is complete.

3.8 Status Information

One of the primary issues in developing distributed programs is trying to diagnose prob-
lems occurring between remote processes. When used in the standard manner, the debuggers in
Berkeley Unix cannot debug child processes and cannot see communication packets between

communicating processes. For this reason, a DPUP function call:

dp_status();
has been included.
dp_status is used to provide information relating to communications between distributed

processes using the DPUP functions. This call is mainly intended to provide status information,

such as a systems call error or a DPUP function error.

14

3.9 Input/Output Multiplexing

An important facility in developing distributed applications is the ability to multiplex
[/O requests among multiple remote processes. In a master /slave application, the master can
use the Unix select system call to determine which of its slaves want to read data, to write

data or have exceptional conditions pending (EOF for example) by using the call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

nfds is the range of file descriptors, that is, at least one greater (because C counts from 0) than

the highest value a file descriptor can assume.

readfds, writefds, ezceptfds are bit masks that indicate which client processes (file descrip-
tors) are ready to read/write/take exception. File descriptor O corresponds to a 1 in the least
significant or Oth bit, file descriptor 1 to the first bit etc. The masks are usually formed by a
bitwise OR operation, for example if the server had file descriptors 3, 5, 6, 8 open to client

processes, the mask to inquire about these processes would be (as a binary number):
...00101101000

These masks are usually formed in an applications program by an instruction of the form :
mask = mask | (1 << {d);

A timeout value may be specified if the select is not to wait indefinitely for input /output
requests. [f timeout is set to 0, the select takes the form of a poll, returning immediately; if
the timeout parameter is a null pointer, the selection will block indefinitely!. Select normally
returns the number of file descriptors selected. If the select call returns due to the timeout

expiring, then a value of —1 is returned and the system parameter errno is set to EINTR.

'To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received by the caller, in-
terrupting the system call.

15

The select function cannot be used for I/O multiplexing with the DPUP broadcast facili-

ties.

4. Broadcast Facilities

The broadcast facilities in DPUP provide an alternative to the point-to-point facilities of
the previous section. As discussed in Section 2, the point-to-point facilities do not scale up to
an arbitrary number of processes due to system constraints. In addition, the master /slave
model that the point to point facilities generally are used to implement may not be appropri-
ate for some applications, where it causes a bottleneck at the master or leads to unnecessary
synchronization. To alleviate these problems and provide an environment especially appropri-

ate for asynchronous concurrent computations, the DPUP broadcast functions were developed.

The broadcast functions provide an interface to a datagram based broadcast system.
Groups of communicating processes sharing the same data and using the broadcast facilities
are identified as broadcast groups. The broadcast system supports multiple broadcast groups
at one time; processes may be members of more than one broadcast group, or more commonly,
several distributed applications that use the broadcast facilities can run on the same system at

the same time, each members of a separate broadcast group.

The DPUP broadcast functions are:

be_open open a connection to the broadcast server
be_close close the connection to the server
bc_create_grp create a new broadcast group
be_remove_grp remove a group

be_join_grp join a group

be_resign_grp resign from a group

bec_send broadcast data

be_receive receive data

A brief explanation of the function and use of each is given below. For a more detailed

specification of a function’s arguments, return value, or error diagnostics, consult the specific

16

DPUP manual entry.

4.1 Using the System

Eaéh computer using the broadcast system must contain two server processes, the
dp_server discussed in the previous section and a broadcast server, bc_server. The dp_server is
used in creating processes and connecting them to the broadcast system, as shown in Figure
2.2, The broadcast server maintains variables which function as segments of distributed
shared memory. Each segment is used by a different broadcast group to communicate with its
members. As a segment is created, the number of variables and the length of each variable are
specified. Data is broadcast by sending new values to a datagram socket which is read by the
be_server processes on each machine; applications processes then read the data from their local
bc_server Updating a block of variables is not an atomic operation, (see Sections 4.9 and 4.11)
so that update protocols may be required. The current update strategy is to overwrite all
variables transmitted; a user may choose to implement other strategies. The applications pro-
gram need not transmit or receive all variables in a broadcast group, the broadcast variable

flags allow this to be controlled by the user.

Before a user program utilizes the broadcast system, the dp_server and bc_server must be
running on each participating machine. This is usually dome by adding a line to the file
[etc/re.local that is executed at boot time. A service port must also exist in /etc/services for

both servers. This is described in more detail in Section 3.1.

In order to access the DPUP data structures, the applications programs must include the
file dpup_user.h which in most installations would reside in the directory Jusr/local/include. In
addition, when an applications program is linked, the libraries libdp_funs.a and libbc_funs.a
must be included. These would usually reside in the directory /usr/local/lib and be accessed by

adding the flags -ldp_funs and -lbc_funs to the compile command line.

17

4.2 Opening the Broadcast System

Before a process can make use of the DPUP broadcast system, the process must establish
a connection to the local broadcast server. This is accomplished by using the following func-

tion call:

status = be_open();

The return value status is O if the call was successful; -1 otherwise. This results in a datagram

socket for broadcasting data and a stream socket for reading data from the server.

4.3 Closing the Broadcast System

Before an application program that has opened the broadcast system terminates, it
should close the system. This closes open socket connections and is important since the total
number of such connections to the bc_server is limited by the operating system. This is accom-

plished by using the function call:

status = bec_close();

function. The return value status is 0 if the call was successful; -1 otherwise.

4.4 Creating a Broadcast Group

To create a new broadcast group in the DPUP broadcast system, the following function

call 1s used:

status = bec_create_grp(bc_id, var_table, num_vars);

This function requests the local broadcast server to set up a new broadcast group containing
num_vars broadcast variables whose sizes are specified in var_table. A group identifier will be
assigned by the local broadcast server and returned in the bc_id argument. The return value
status is 0 if the call was successful; -1 otherwise. The local broadcast server will broadcast the
new group’s parameters and id thus informing the bc_servers on other hosts of the existence of

the new group. The other servers then create their own copies of the broadcast variables.

18

4.5 Remote Process Creation

After an initiating process has created the broadcast group, remote processes may be
created. This is done using the point-to-point function call dp_create_proc described in Section
3.2. The initiating process must also send the group id number to the remote process using
dp_write. The remote process must begin with a dp_rmt_setup, as described in Section 3.3, and
then read the group id with a dp_read. At the end of its execution the remote process should

exit using dp_rmt_ezit.

4.8 Joining a Broadcast Group

Once a broadcast group has been created, processes that have opened the broadcast sys-

tem may join the group by using the function call:

id_index = be_join_grp(bc_id);
(The process that created the group also must join it). This function informs the local broad-
cast server that a new process has joined the broadcast group identified by bc_id. The function
returns a broadcast identifier index that identifies the broadcast group. The process then may
transmit and receive data within this group. Processes may be members of multiple broadcast

groups at the same time.

4.7 Resigning from a Broadcast Group

A process may resign from a broadcast group identified by id_index by using the function
call:
result = be_resign_grp(id_index);
Once a process resigns from a broadcast group, the process may no longer transmit or receive

broadcast data within that group unless the process once again joins the group.

19

If a process is the last member of a group to resign, and if another process has a

be_remove_grp command pending, the group will be removed at this time.

4.8 Removing a Broadcast Group

To remove a broadcast group from the DPUP broadcast system, the following function is

used:

result = be_remove_grp(bc_id);

bc_id identifies the broadcast group that is to be removed. Currently any process may call this
function (i.e. there is no concept of superuser processes in the broadcast system at this time).
[t should be noted that removing a broadcast group while the group is still active will be
delayed until all the members of the group have resigned and the group is no longer active. It
is important that non-active groups be removed so that the broadcast server state tables do

not become full of non-active groups.

4.9 Broadcasting Data

A process sends broadcast data using the function:

bytessent = bc_send(id_index, var_flags, data);

This function broadcasts variables within the broadcast group specified by id_indezr. var_flags
is an array used to specify which variables in this group are being transmitted. A variable will
be transmitted only if the associated var_flag is set to 1. All broadcast group data variables
must first be moved, if necessary, to a contiguous block of memory specified by date. The

return value bytessent is the number of bytes sent if the call was successful; -1 otherwise.

This is not an atomic operation, that is, the data is sent in three parts, the header, the
varflags, and the actual variables. Therefore, the data sent by one process may be interleaved

with data from other processes. In the current implementation, once the header packet is

20

received, the server aw its the two remaining parts and discards any data received from other
processes until the transaction is completed or a time limit is reached. Thus, it is possible that
some broadcast information will never be received; this is more likely the more frequently
broadcast data is sent. It is not possible, in the current implementation, to notify other send-

ing processes that their data may have been discarded.

4.10 Receiving Broadcast Data

A process receives broadcast data using the function:

bytesrecvd = be_receive(id_index, mode, data, var_flags);

This function is used to read broadcast data variables associated with the broadcast group
identified by id_inder that have been received by the local broadcast server. The function

argument mode indicates which variables are to be read. The following modes are currently

implemented:
mode description
0 all variables are returned
1 only new variables are returned
2 all variables requested by var_flags are returned
3 only requested variables that are new are returned
4 block until requested variables arrive

New variables are defined as variables that the process has not yet read. Upon return, the
argument var_flags is updated to indicate which variables have been read and the data is
placed in the location data. The return value bytesrcvd is the number of bytes received if the
call was successful; -1 otherwise. Mode 4 does not include a timeout parameter, and therefore

if the processes are not synchronized properly, this mode can block forever.

21

4.11 Timing Considerations

The broadcast system is sensitive to timing. As discussed in Section 4, it was created pri-
marily for applications where interprocessor communication is infrequent. Descriptions of the
timing problems and their current solutions follow. The next generation of distributed utilities

is intended to alleviate these problems.

The interactions of the group commands, creation, joining, resigning and removal, can
cause one process to try to join a non-existent group or to try to remove an active group. The
bc_join_grp function has an error return that must be checked by the user program to see if
the join was successful; if not, it should be tried again. The bc_remove_grp function blocks

until the group is inactive. These have proved to be adequate solutions to these problems.

There can be problems synchronizing the creation and initialization of data in a broad-
cast group with requests to read the data. Typically one process creates and initializes the
group. If other processes don’t wait until this step is complete,they may request data and
receive uninitialized values. This can be avoided by reading data in mode 4 the first time, so
the process blocks until there is actually data available. This has proven an adequate solution

to this problem.

In order to deal with the problems of non-atomic data mentioned in Section 4.8, the
be_server may take somewhat drastic action. As explained in Section 4.8, data broadcast by
members of the group may or may not be received and recorded by one or more bc_servers.
This action is a local one, taken by each bc_server, yet the bc_send is a global operation. The
result is that different computers participating in a distributed computation may have different
values of the broadcast variables, even if no messages remain to be read. Therefore, the
current implementation of broadcast variables is best suited to the type of coarse grain paral-

lel algorithms discussed at the end of Section 2.

[&)
[

5. Experience Using DPUP

Several parallel computation projects at the University of Colorado have successfully
implemented and tested distributed concurrent applications algorithms built upon DPUP.
Almost all these algorithms use the point to point facilities described in Section 3, because they
were available to users earlier than the broadcast facilities. This section briefly summarizes

some of this research.

The predominant use of DPUP has been in the development of parallel algorithms for
problems from optimization and VLSI design. Many problems in these fields seem to be amen-
able to solution by coarse grain parallel algorithms that require little shared data or interpro-
cess communication. Thus they appear to be good candidates for efficient parallel implementa-

tion on a network of computers.

Byrd et al [1986] have used DPUP to construct several concurrent global optimization
algorithms. The global optimization problem is to find the lowest minimum of a function of
real variables that may have multiple local minima, i.e. lowest points in some region of the
variable space. This problem is difficult and expensive to solve and thus parallel algorithms
are of interest. Byrd et al propose a synchronous stochastic method that has three malin parts:
a Monte Carlo search of the variable space, a phase that essentially performs nearest neighbor
calculations, and a phase where multiple local minimizations are conducted concurréntly. The
parallelism is at a very high level and relatively few messages between processes are required.
Several methods of this type have been implemented using DPUP and tested on networks of 4
and 8 Sun-3 workstations, with encouraging results. Speedups are often 80% of optimal or

higher on problems where function evaluation is expensive.

Trienekens [1986] used DPUP to solve two discrete optimization problems, the knapsack
problem and the traveling salesman problem, on a network of computers. These problems fre-

quently are solved by branch and bound methods which dynamically construct a tree of simpler

subproblems, from whose solutions the solution of the original problem is obtained. The paral-
lel methods use the master process to generate the tree of subproblems and monitor progress,
and distribute the solution of the subproblems to the various computers on the network. On a
75 city traveling salesman problem, an implementation of the parallel algorithm using DPUP
ran over 4.6 times as fast on 5 Pyramid P90-X computers as the same algorithm on one

Pyramid.

Several projects in parallel algorithms for VLSI design problems have been based upon
DPUP. Moceyunas [1986] has used DPUP to construct parallel simulated annealing algorithms
for the optimal placement of a VLSI chip. This work has shown that simulated annealing can,
through several partitioning strategies, gain performance advantages from parallel solution on
a local area network of computers. Work on parallel algorithms for Boolean function minimi-
zation currently is underway. This work is aided by a system built on top of DPUP by Mueller

[1986] that allows the network to simulate various interconnection topologies.

DPUP has been used to implement several simple iterative methods for solving systems of
linear equations. These include the chaotic relaxation algorithm of Chazan and Miranker
[1969] (given as the example in Appendix A in two versions, one using the point to point facili-
ties and the other using the broadcast facilities), and block Gauss-Seidel and SOR algorithms

for solving systems arising from elliptic partial differential equations.

DPUP also was used to build a tool for evaluating the speed and completeness of various
vendors’ Ethernet hardware and Berkeley Unix interprocess communication implementations.
This benchmarking tool was run in both loopback mode and remote mode on all machines
claiming to have Berkeley Unix interprocess communication at the Portland Usenix conference
vendor exhibit in June 1985. It discovered incomplete and incorrect implementations in several
vendor products. The machines tested were Apollo, Celerity, Gould, ISI, Masscomp, MicroVax,

Pyramid, Sequent, Sun, Symmetric, and Vax. This use demonstrates the portability of DPUP.

24

6. References

G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe [1985], "The Eden system : a technical
review," IEEE Transactions on Software Engineering 11, pp. 43-39.

A. Birrell, R. Levin, R. Needham, M. Schroeder [1981], "Grapevine: an exercise in distributed
computing,” Proc. Eighth Symposium on Operating Systems Principles, pp. 169-177.

R. H. Byrd, C. L. Dert, A. H. G. Rinnooy Kan, and R. B. Schnabel [1986], "Concurrent stochas-
tic methods for global optimization”, Technical Report CU-CS-338-86, Department of Com-
puter Science, University of Colorado at Boulder.

N. Carriero and D. Gelernter [1986], "The S/Net’s Linda kernel,” ACM Transactions on Com-
puter Systems 4, pp. 110-129.

D. Chazan and W. Miranker [1969], "Chaotic relaxation,” Linear Algebra and its Applications, 2,
pp. 199-222.

R. Cook, R. Finkel, D. DeWitt, L. Landweber, R. Virgilio [1983a], "The Crystal nugget, Part 1
of the first report of the Crystal project,” Technical Report 499, Computer Sciences Depart-
ment, University of Wisconsin - Madison.

R. Cook, R. Finkel, D. DeWitt, L. Landweber, R. Virgilio [1983b], "The Crystal nugget, Part II
of the first report of the Crystal project,” Technical Report 500, Computer Sciences Depart-
ment, University of Wisconsin - Madison.

E. C. Cooper [1982], "Writing distributed programs with Courier,” Technical Report, Computer
Science Division, University of California at Berkeley.

B. Feijoo and R. R. Meyer [1984], "Piecewise-linear approximation methods for nonseparable
convex optimization”, Technical Report No. 521, Computer Sciences Department, University of
Wisconsin - Madison.

P. K. Harter and P. Maybee [1985], "DCS : A system for distributed computing support,”
Department of Computer Science Technical Report CU-CS-309-85, University of Colorado at
Boulder.

E. Lazowska, H. Levy, G. Almes, M. Fischer, R. Fowler, S. Vestal [1981], "The architecture of
the Eden system,” Proc. Eighth Symposium on Operating Systems Principles, pp. 148-159.

O. McBryan and E. Van de Velde [1985], "Elliptic and hyperbolic equation solution on hyper-
cube multiprocessors, Courant Institute Preprint, Aug. 1985.

P. Moceyunas [1986!, M.S. Thesis, Department of Electrical Engineering, University of Colorado
at Boulder, in preparation.

H. Mueller [1986], "Multi-processor emulation on a local area network,” M.S. Thesis, Depart-
ment of Computer Science, University of Colorado at Boulder.

G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudish, G. Theil [1981], "LOCUS: A
network transparent, high reliability distributed system,” Proc. Eighth Symposium on Operating
Systems Principles, pp. 169-177.

R. B. Schnabel [1984], "Parallel computing in optimization,” in Computational Mathematical
Programming, K. Schittkowski, ed., Springer-Verlag, Berlin, pp. 357-382.

C. L. Seitz [1985], "The Cosmic Cube," Communications of the ACM 28, pp. 22-33.

J. Shoch and J. Hupp [1982], "The "worm" programs - early experience with a distributed com-
putation,” Communications of the ACM 25, pp. 172-180.

W.-K. Su, R. Faucette, and C. Seitz [1985], "C programmers guide to the cosmic cube,” Depart-
ment of Computer Science Technical Report 5203:TR:85, California Institute of Technology.

M. M. Theimer, K. A. Lantz, and D. R. Cheriton [1985], "Preemptable remote execution facili-
ties for the V-system,” Proc. Tenth ACM Symposium on Operating Systems Principles, Dec.
1985, pp. 2-12.

H. W. J. M. Trienekens [1986], "Parallel branch and bound methods for discrete optimization
problems,” (tentative title), in preparation.

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel [1983], "The LOCUS distributed
operating system,” Proc. of the Ninth ACM Symposium on Operating Systems Principles, Oct.
1983, pp. 49-70.

Appendix A. Examples using Point-to-Point and Broadcast Facilities

This appendix contains two implementations, using DPUP, of a simple but nontrivial dis-
tributed concurrent computation. The first implementation uses the point-to-point facilities to
build a master/slave version of the algorithm. The second implementation is a broadcast ver-

sion of the same algorithm.

The algorithm implemented is a "chaotic relaxation” method for solving systems of n
linear equations in n unknowns Az=4. This method, first proposed by Chazan and
Miranker[1969], is an asynchronous version of the Gauss-Seidel method. The Gauss-Seidel
method simply cycles through the n equations in order, solving each equation to yield a new
value for the corresponding variable. That is, when solving the k™ equation, the current values
of x[i], >k, are substituted into this equation and a new value of x[k| is obtained. For certain

. classes of matrices A, the iterates ccaverge to the solution of the linear system.

In the chaotic version of the Gauss-Seidel method, the order of processing the equations is
arbitrary, and the computation for processing the k™ equation may use arbitrarily old values
of the other variables. Chazan and Miranker have shown necessary conditions for such an algo-

rithm to converge to the correct solution.

A simple parallel version of the chaotic relaxation algorithm is obtained by creating one
process to handle each equation. Process k repeatedly solves the P equation for the £* vari-
able, using whatever values of the other variables it currently has, and then sends its new
value of xk| to the other processes. This is the method implemented below. In the point-to-
point version, each process repeatedly sends its new value of its variable to the master, obtains
the master’s latest values of the other variables. and performs its next iteration. The master

monitors the computation and decides when to terminate it. In the broadcast version, each

process repeatedly broadcasts its new value of its variable, obtains the values of the other

variables from its bc_server, and performs its next iteration. An initiating process is used to

start, monitor, and terminate the algorithm.

Each version of the example contains five procedures. Main is the driver which includes
the creation of the remote processes and the communication structures. Proc_ctrler monitors
the computation and, in the point-to-point example, is the master in the master/slave com-
munications pattern. Chaos_rmt is the remote process that repeatedly solves the k* equation
for the &™ variable. The input and output procedures, input_data and output_rits are included

for completeness; they do not contain any DPUP function calls.

example.chaos v example.chaos

/K

“ POINT-TO—POINT VERSION OF THE CHAOTIC RELAXATION ALGORITHM
* e

e chaos_0.h : include file

'y

b Description

. This file contains the parameters used by the master and
o the remote processes . [n particular :

e —~ the names of the output file, the remote process;

£ — the number of different hosts on which the remote processes will
e be started,

b — the constants related to the number of equations in the system,
b — the value used for the stopping condition;

* &

b Timothy Gardner — March 1984

o Carla Mowers and {sabelle Gerard — June 1986

"/

#define OUTPUT_FILE " /tools /dpup /examples /strm /chaos0 _output”
/* name of remote processes */

#define PROC_NAME " /tools /dpup /examples /strm /chacs_rmit_0"
/*

** number of different hosts on which you want fo run the remote processes

** [mazimum 7)
*

#define NUMHOSTS 7

/¥ name of the hosts */

#define HOST_NAMEQ "molson”

#define HOST_ NAMEL "bass”

#define HOST_NAME2 "watneys”

#define HOST_NAME3 "heineken”

#define HOST NAME4 "anchor”

#define HOST NAMES "guiness”

ffdefine HOST_NAMES "becks”

/* mazimum number of processes which can be started */

#define MAXNPROC 32

** g solution has been found when all old z values differ from the

** new z values by no more than RLT PRECISION

*/ -

#define RLT PRECISION 0.0001

/*

“ POINT-TO-POINT VERSION OF THE CHAOTIC RELAXATION ALGORITHM
** This is the master process

R

** Usage: chaos data_file

w* Description -

£x The purpose of this program is to find the resull X of the
= equation AX = B, where A is an n'n matrz, and X and B are vectors
w* of size n.

w* The master process reads in the values of n, A, and B from
o the input file. Then it creates n remote processes each of which

& £

is going to solve an equation of the form
= Afproc_numff] X[proc_num/ = Bfproc_num/ [where proc_num is the
number of the current process | .

Jul 8§ 11:35 1986 Page | of ezample.chaos

example.chaos example.chaos

b Data_file format:

* & n

b ALl A12 A13 Ar{ ... Aln B:

- A21 A22 A28 A2{ ... A2n B2

£ x . . .

i Anl An2 And An{ ... 4dnn Bn

“* Qutput:

- The z values for the solution of the equation: Az = §
. Timothy Gardner — April 1984

£ Carla Mowers and [sabelle Gerard — June 1936
“/

#inelude <stdio.h>

#ineclude <sys/timeh>

#include <sys/types.h>

#inelude <sys/socket.h>

#inelude <netdb.h>

#inelude <netinet/in.h>

#include " /tools/dpup/src/dpup_user.h”
#include " /tools/dpup/examples/strm /chaos 0.h"

struet proc

{

int proc_sock; /* remote process socket descriptor */
int equ_num; /* equation number process is */
struet rmt_stat host; /* to receive the name of the host */
b
char *Host_nms(2] = {"", NULL}; * used fo receive the name of the “/
/* host on which a process is created */
char *Proc_nm(2] = {PROC_NAME NULL}; /* used fo specify the name of the */
/* remote process to be created */
/* array of hosts an which remote */
* processes can be started */
char “Host _names[8] = {HOST NAMEQ, HOST NAME1l, HOST NAMEZ,

HOST NAME3, HOST_NAME4, HOST_NAMES,
HOST _NAMES, NULL};

int Steps; /¥ number of steps to get the result */
struet proc Proc_table]MAXNPROC); /* to keep information about remote */
/* processes created “/ '
FILE *Ofd; /© file descriptor for ouiput file 5/
main{arge, argv) main
int arge;
char ‘argvil;
{
double data array MAXNPROC|MAXNPROC + 1} /© arrey to hold */
/" input data ‘/
double x arrayMAXNPROC, /< array to hold)

Jul 8 11:35 1986 Page 2 of ezample.chaos

J

example.chaos example.chaos

Jul

...maimn

/* calculated 1 values*/

int pum_equ; /* number of equations in system */

int procs] MAXNPROC; /¢ process numbers indered by socket */
/© number

register int i

int result;

Steps = 0

/* open the input file */

it ((Ofd = fopea(QUTPUT_FILE,"w")) < Q)

{
printf{"cannct open OUTPUT FILE\a");
exit{);

b

/* read data from the input file */
input_data(arge, argv, &num_equ, data_array);

/* start with all z values equal to zero °/

for (i = 0; i < num_equ; i++)
x_array{i] = 0;

*

L

create one remote process for each equation and send the 4 and b

** yalues and the initial z walues to that process
*/
for (i = num_equ; i > 0; i——)

{
Host _nms[0] = Host_names|(i—1) % NUMHOSTS];

if ((Proc_table[i — I].proc_sock =
dp_create_proc(&(Proc_tablei — 1].host),
Host _ams, Proc_om, 0))<0)

printf("master: create_proc failure\n");
dp_status();
exit();
¥
/* send the values of A and B to the remote process */
result = dp_write(Proc._table[i — 1}.proc_sock,
(ehar) &data_array{i — 1][0], (num_equ+3) ‘sizeof{double});

/* send the initial value of X to the remote process */
result = dp_write(Proc_tablei — 1f.proc_sock,

(ehar ¢ &x_array[0], num_equ ‘sixeof{double));

/* record socket descriptor of remote process */
procs[Proc_table[i — 1].proc_sock] = i — 1;

}

/* compute the result X of the equation AX = B */
proc_ctrler{procs, num_equ, x_array);

/* oulput the results */
output_rlts(num‘equ, data array, x__array);

8 11:35 1986 Page 3 of ezample.chaos

example.chaos

proc_ctrler

"/

example.chaos
i
//‘
< proc_ctrler — routine to handle the sending and receiving of data
. to and from the remote processes
/
proc_ctrler(procs, aum_equ, x_array)
int procsi/, aum_equ;
double < _arrayl);
{
int sack; /% socket descripler </
int fds_mask; /¢ select function masks */
iot tmp _mask; /% saves value of select mask </
int afds; /* number of selected sockets £/
int proc_oum; /* process number W
int done_flags; /* when all bits are zero a solution
/* has been found
/¢ this variable is updated each time & /
/* remote process returns & new I value */
double result; /* result returned by remote process
double diff; /* diff between new and old z values
register int i;
struet timeval timeout;
timecut.tv_sec = 0 /* used by select for */
timeout.tv_usec = 0; /* polling sockets */
/* clear flags — ie. a cleared flag is a bit set to L %/
/% o marked flag is a bit set to 0 */
for (i=0; i<num_equ; i++)
done_flags |= (1 << i);
while (done flags > 0) /* a solution has not yet been found */
{
fds_mask = 0;
/* set up file descriptor mask used by the select function */
far (proc_num=0; proc_num < num_equ; proc_num-++)
fds_mask |= (1 << Proc_table[proc_num].proc_sock);
/* fds_mask must be restored after each select call “/
/* because select clears fds_mask if no fd is ready */
/* to be read */
tmp _mask = fds_mask;
/* wait for remote processes to return resulls £/
/* by poiling each socket until data is present £/
while ((nfds = select(NFILE-1, &fds_mask, 0, 0, &timeout))< =0)
fds mask = tmp_mask;
sock = 0,
while (nfds)
{
/¢ determine processes that have returned resulls </
/¢ by checking each bit in the mask returned by
Jul 3 11:35 1986 Page

/
a4 L

of ezample.chaos

example.chaos

Jul

3 11:35 1986

example.chaos

...proc_ctrler

/¢ select. et bits mark ready to read fd's </

for (;;)

{
if (fds_mask & 1)

fds _mask = fds_mask >> 1,
bereak;
}

sock++;
fds_mask = fds_mask >> 1,

proc_aum = procs{sock];
/% read result returned from remote process */

dp_read(Proc_table[proc _num]| proc_sock, (ehar 9 &result, sizeot{double), 1};

diff = result — x_array[proc_num];
if (diff < 0)
diff *= -1;

if (diff <= RLT_PRECISION)

/* set the done flag for this process by "‘/
/* clearing the prac_num th bit of done_flags */

done_flags &= (dome_flags ~ (I << proc_num));
else
/* clear the done_flag for this process by */
/* seiting the proc_num th bit of done_flags %/
done_flags j= (I << proc_num);
/* update the z value array with new z value */

x_array[proc_num] = result;

fprintf(Ofd, "step number : %2d ", Steps);
fprintf(Ofd, " x[%d] = %8.8lf\n", proc_num, result);

fflush(Ofd);
/* a solution has been found when all process have */
/* returned a new z value that is not different by “/

/* more than RLT PRECISION

if (done_flags == 0)
break;

/* send new z values to the remote process </
dp_write(Proc_table{proc_num|.proc_sock, (ehar 4 x_array, aum_equ ‘sizecfldouble));
Steps++;

nfds——;
sock++;

Page 5 of ezampie.chaos

example.chaos example.chaos

...proc_ctrler

/“ a solution has been found so terminate remote processes */

for (i=0; i<oum_equ; i++)
dp_kill _proc(&{Proc _tableli] host));

}

//

/* 4

e input _data — routine to fetch data from the date file

/

input_data(arge, argv, num_equ, data_array) mput,,a’ata
int arge, "aum equ;
double data_array[[MAXNPROC + 2J;
char ‘argvi];

{

register int row, col;

FILE "data_fp;

if (argc < 2)
printf("usage: %s datafile\n", argv{0]);
exit();

if ((data_fp = fopen(argv[l], "r")) == NULL)

{
printf("cannot open %s\n”, argv(l]);
exit();

if (fscanf(data fp, "%d", num equ) < 1)

printf("data format error in %s\n", argv{l]};
exit();

t
for (row=0; row< ‘num_equ; row-+-+)

{

/* place number of variables and the equation number in */
/* each array along with the A and b values */

|
|

]

data__array{row|[0

[(double) “num_equ;
data _arrayjrow|[1

(double) row;

[

for (col=2; col< ‘num_equ + 3; col++)

{

if (fscanf(data fp, "%l", &data_arrayfrowjicol]) < 1)

printf("data format error in %s\n", argvil]);

exit{);
}
}

!

i
}
/K*//
/t
b output_rlts — routine to oufput the final resulls
°/
output_rlts(num eau, data array, x_array) OWP?Lt_’i'[fS

Jul 8 11:35 1986 Page 8 of ezample.chaos

example.chaos example.chaos

...output_rits

int num_equ;

dauble data_array{][MAXNPROC + 2|

double x_arrayl};

{
register int 1, row, col;
fprinef{Ofd, "\a\nequaticn aum x value\n");
fprintf(Ofd, "————————————— mm———— \a");
for (i=0; | < oum_equ; i++))
fprintf(Ofd, " %d Z18.1210\n", i+1, x_arrayfi]);

fflush(Ofd);

ferintf{Ofd, "\o\n");

ferintf{Ofd, “program statistics\n");
fprintf(Ofd, "——————— —————————— \a\z");

fflush({Ofd);

I

%od\n", 3);

%d\n", num_equ);
%d\n", Steps);
%If\a" RLT PRECISION);

fprintf(Ofd, "number of hosts
fprintf(Ofd, "number of processes
fprintf(Ofd, "total number of steps
(
(

]

]

fprintf{Ofd, "degree of precision
fprintf{Ofd, "\n");

fflush(Ofd);
}
/* '
& POINT-TO—-POINT VERSION OF THE CHAOTIC RELAXATION ALGORITHM
EE 3
¥ This is the remate process
* ¥
w* remote process to calculate a new z value for the equation sent
w* from the master process
* %
¥ Timothy Gardner — April 1984
#* ' Carla Mowers and Isabelle Gerard — June 1986
“/

#inelude <stdio.h>
#inelude " /tools /dpup/examples /strm /chaos 0.h"

main{arge, argy) main
int arge;
char “argvl(];
{
int sock; /¥ socket connection tfo masier */
int length; /* amount of data read #/
char data _buf[5Q0]; /¥ buffer to store A and b values */
char x_values{500]; /* buffer to store z vaiues */
double sum, Oum_equ, pProc_anum,;
double b_value;
double ‘dbl _ptr, "x_ptr;

register int N

/ get socket descriptor to master process “/
sock = dp_rmt_setup{&argc, argv);

if (sock < 0)

{

orint{("remote: rmt_setup error\n’};

Jul 8 11:35 1986 Page 7 of ezample.chaos

example.chaos example.chaos

...main

dp _status();
dp rmt _exit();

}

/° read the values of A, B, and X */
if {dp_read(sock, data_buf, 0, 1) < 0)

printf("remote: read errcr 1\n");
dp_status();
dp_rmt_exit{);

}
dbl_ptr = (dauble *) data_buf;

num_equ = dbl_ptri0j;
proc_oum = dbl_ptr{i};
b_value = dbl_ptr{{(int) oum_equ)+2}

/ © continue processing new z values *

/¢ when a solution has been found the master will terminate us %/

for (;;)
{

/* read the wvalue of ¥ */

if (dp_read(sock, (ehar®) x_values, 0, 1) < 0)
{
printf{"remote: read error 2\n");
dp_status();
dp_rmt_exit(};
¥
x_ptr = (double ¥ x_values;
sum = Q;
for (i = 0; i < num_equ; i++)
{
if (1 != proc_num)

{
}

*

sum += dbl_ptr(i+2] * x_ptrfi];

y
sum = (b_value — sum) / dbl_ptr{({imt) proc_num) + 2J;
/* send calculated z value back to the master */

if (dp_write(sock, (ehar) &sum, sizesf{double)) < sizeof{double))
{

printf("remote: dp write error\n");

dp _status();

dp_rmt_exit();

}
}
/*
o BROADCAST VERSION OF THE CHAOTIC RELAXATION ALGORITHM
P
fx chaos_L.h . include file
* &
i Description -

£

ts file contains the parameters used by ! ster
Th { ¢ the onar te by the master and

Jul 8 11:35 19585 Page 3 of ezample.chaos

example.chaos example.chaos
< the remote processes . [n particular

“e ~ the names of the output file, the debbuging file, the remote

- process,

“ — the number of different hosts on which the remote processes will
i be started,;

A - the constants related to the number of equations in the system;
“ — the value used for the stopping condilion;

“F — the structure describing the data of the group,

b Carla Moawers and [sabelle Gerard — June (386

x/ \

#define OQUTPUT_FILE " /tools /dpup /examples /dgrm /chaosl _output”

/" name of remote processes */

#define PROC_ NAME " /tools /dpup /examples /dgrm /chaos_rmt_1"

*

“* number of different hosts on which you want to run fhe remote processes
“* (mazimum T)

"/
#define NUMHOSTS 7

/* name of the hosts */

#define HOST NAMEO "molson”
#define HOST NAME1L "bass”
#define HOST_ NAMEZ "guiness”
#define HOST NAME3 "anchor”
#define HOST NAME4 "heineken”
#define HOST NAMES "becks”
#define HOST_NAMES "watneys”

/* mazimum number of processes which can be started */
#define MAXNPROC 32

/% size of the buffers to send and receive data */
#define BUFSIZE sisecf{double) * MAXNPROC * MAXNPROC +
(2 * sizecf(double) + sizeof(short)) * MAXNPROC

¥
** number of variables in the group */

#* MAXNPROC for each line of A, B, X, and done_flag
/

#define NUMVARS ¢4 “ MAXNPROC

/&

/
“* 4 solution has been found when all old z values differ from the

“* new z values by no more than RLT PRECISION
/
#define RLT PRECISION 0.0001

/* structure describing the data of the group */

struet chaos

{

double AMAXNPROC|MAXNPROC|; /* matriz 4 “/
double BMAXNPROC]; /% vector B £/
double XIMAXNPROC; /¢ solution of the equation */
short done flag{MAXNPROC], /¢ flag to tell a remote 1s */

/¥ done °/

Jul 5 11:35 1938 Page 3 of ezample.chaos

example.chaos
/ﬁ
- BROADCAST VERSION OF THE CHAOTIC RELAXATION ALGORITHM

“/

#inelude
#ineclude
#inelude

#inelude
#include

char

char

ehar

int

FILE

This is the master process

Usage: chaos data_file

Description -

The purpose of this pragram is to find the result X of the
equation AX = B, where A is an n*n matriz, and X and B are vectors
of size n.

The master process reads tn the values of n, A, B and the
inttial values of X, from the input file. Then it creates n remote
pracesses each of which is going to solve an equation of the form
Afproc_numffj X/proc_num/ = Bfproc_num/ (where proc_num s the
number of the current process) .

Input_file format:

n
ALl A12 A13 A14{ ... Aln
A21 422 A28 A2 ... Afn

A.nl A.nf ‘:1n3 Am{ ~An.n.
B:r B2 B3 B4y ... Bn
X X2 X3 X4 ... Xn

QOutput:

The X values for the solution of the eguation: AX = B
Carla Ma‘wers and Isabelle Gerard — June 1986

<stdio.h>

<signal.h>

" [tools /dpup /src /bdct.h”

" [tools /dpup /src /dpup_user.h”

" /tocls /dpup /examples /dgrm /chaos _1.h"

Host _ams{2] = {"", NULL}, / to receive the name of the host */
/* on which a process is created “/

Proc_am[2] = {PROC_NAMENULL}; /* used to specify the name of the */

* remote process to be created £/
P

/* array of hosts on which remote ©/
* processes can be started £/
‘Host _names8] = {HOST NAMEQ, HOST NAMEL, HOST_NAME?,
HOST NAME3, HOST NAME4, HOST_NAMES,
HOST NAMES, NULL};

Steps; /* number of steps fo get the result */

‘Ofd; /% file descriptor for output file </

main({argc,argy)

int
char

Jul 8 11:35 1986

argce;
3 1.
argvij;

example.chaos

main

Page 10 of ezemple.cnaos

example.chaos

struet chaos “¢c_ptr;

int proc_sock{MAXNPROC)
ehar dataBUFSIZE},

char proc_aum{MAXNPROC];
short var _tablel NUMVARS),
char var flags{NUMVARS}
int num_equ;

struct rmt_stat host;

int result;

struet bd _id id;

short id _index;

char str_aum_equ[l0Qf;

register short i,j;

c_ptr = (atruet chaos ¢ data;

Steps = 0;

/* open the output file */

e e e e S S T S e e M S S e S M S S

if{(Ofd = fopen(OUTPUT FILE,"'w")) < 0)
{

perror{"fopen”);
be_close();
exit(1);

}

EE S S T

EE T T

* K K m X A N N

/¥ initialization of the data of the group */

input _data(arge,argv, &num_equ, c_ptr);

example.chaos

...main

pointer to the structure descri— </
bing the data of the group £/
array of the socket to the remote “/
pracesses “/
buffer to send/receive data “
number of process to be created
array containing the sizes of the °/
data of the group “/
flags to tell which data to send </

or recetve “/
number of equations £/
to receive the name of the host on °/
which a remate process i3 created */
number of bytes sent/received

/
*/

id of the broadcast group */
indez of the current process in */
the broadcast group /
to pass the number of equations to */
the remote processes */

/* set the var_flags corresponding to A,B and X, to 1 ¥/

for (i=0; | < NUMVARS; i++)
{

}

var_flagsfi] = o

for (1 = 0; I < *num_equ ; i++)
/* each of these flags corresponds to o line of the matriz A */
{
var_flagsfi] = 1;
}
for (i = MAXNPROC; i < MAXNPROC + ‘num_equ; i++)

/* each of these flags corresponds to an element of the vector B */

{

1
i
for (i = 2 ° MAXNPROC; | <

1

var_flagsfij = I

“ MAXNPROC +

‘num _equ; i++)

/* each of these flags corresponds to an element of the vector X </

{
)

var flagsfi] = |;

’

/© initialize the var table in which the sizes of the variables “/

Jul 8 11:35 1956

Page 11 of ezample.chaos

example.chaos example.chaos

...main
/* are given "/

for (i = 0; | < MAXNPROC ; i++)
] corresponds to a line of the matriz A </

var_tableli] = sixeof{double] * MAXNPROC,
}
for (I = MAXNPROC; i < 2 * MAXNPROC; i=+)
/* corresponds to an element of the vectar B)

{

}
for (i = 2 * MAXNPROC; i < 3 * MAXNPROC; i++)

/* corresponds to an element of the vector X */

{

}
for (i = 3 * MAXNPROC; i < ¢ * MAXNPROC; i++)

/* corresponds to a stop flag for each of the remote processes */

{
var_tableli] = sizseof{short);

} .

/¥ establish a connection with the local broadcast server */
result = be_oapea();
il (result < 0)

var_table(i] = siseof{double);

var_table{i] = sizeof{double);

printf("be_open error\n");
dp_status();
exit(1);

}

/¥ set up a new broadcast group */
result = bc_create_grp(&id, var_table, NUMVARS);

if (result < Q)

{
printf("bc_create grp error\n");
dp _status();
exit(1);

¥

/¥ join the broadcasi group */

id_index = bc_join _grp(&id);

iff (id_index < 0)

printf("be_join _grp error\n");
dp_status();
exit(1);

}

/* create the remote processes */

sprintf(str_num_equ, "%d”, num_equ);

for(i = aum_equ; i > 0; i—-—)

{
Host ams{0] = Host names|(i—1) % NUMHOSTS|;
sprintf(proc_num,"%d",i~1);
if ((proc_sockji—1l] = dp_create_proc{&host, Host nms,

Proc_am, str_aum_equ, proc_aum, 0))<0)

{

fprintf{stderr, "dp create proc failure\n");
dp status();
exit(1);

b

result = dp write(proc_sockli—1], (ehar) &id, sizeof(id));

Jul 8 11:35 1986 Page 12 of ezample.chaos

example.chaos

if (result != siseof(id))

}

printf("write errar\n");

printf("result = %d\a", result);

dp _status{);
exit(1);

/* broadcast the data of the group */
result = bc_send(id index, var_flags, data);

/= compute the result X of the equation AX = B */
proc_ctrler(num_equ, c_ptr, data, var_flags, id_index);

/* output the resulls

*/

output_rlts(aum _equ, ¢_ptr);

/% all the processes are terminated so terminate the master */

/¥ resign from the broadcast group */
result = be_resign_grp(id_index);

printf("master:result of be resign grp = %d\n", result);

/* remove the broadcast group */
result = be_remove grp(&id);

printf("masterresult of bc_remove grp = %d\n", result);

*/

/* terminate connection with the broadcast server

result = be_close{);

priﬁtf("master:result of be_close = %d\n", result);

*

** proc_ctrler : procedure fo ezchange data with the remote processes untif
#* a solution to the equation AX = b 1is found

proc_ctrler(num_equ, ¢_ptr, data, var_flags, id_index)

*/

int num_equ;

struct chaos ‘e ptr;
char data{BUFSIZE};

char var_flags{NUMVARS];
int id_index;

{

example.chaos

...main

proc_ctrler

int proc_num; /* process number */
int done_flags; /* when equal to zero a solution has */
/* been found “/

int result; /* number of bytes received/sent </
int i
done flags = L;
while (done flags > 0) /* a solution has not yet been found */
{

/< set war_flags to receive X and the done_flags °/

for (i = 0; i < NUMVARS; i++)

{

1
i

Jul 3 11:35 1986

var flagsii] = 0;

Page 18 of ezample.chaos

example.chaos example.chaos

...proc_ctrler

for (i = 0; I < oum_equ; i++)
if { c¢_ptr—>done_flaglif == 0)

var_flagsi2 © MAXNPROC + i = L
var_flagsi3 < MAXNPROC + i =

}

/* wait for remate processes to return results */
result = be_receive(id_index, (ahort) BLOCK _ON_DATA, data, var _flags);

/* output the new values of X */
for (I = 0; i < num_equ; i++)

{

Steps++;

fprintf(Ofd, “"step number : %2d ", Steps);
fprintf{Ofd, ” x[%d] = %8.8I1R\a", i, c_ptr—>X[]);
fflush(Ofd);

}

/* determine if ail processes are done */
done flags = G
for (i = 0; | < num_equ; i++)
{
if (c_ptr—>done_flagfi] == Q)
/* the remote process i is nat done */

{

done_flags = 1;

break;
¥
¥ /* end of for */
} /¥ end of while */
¥ /* end of prac_cirler */
*
f" input_data : routine to read data from the file passed in .
*'/
input_data(arge, argv, num_equ,c_ptr) mput_dazfa
int arge;
char “argv(];
int ‘num _equ;
struet chaos ¢ _pir;

{

register int 1,j;

FILE *data_fp;
if (arge < 2)

printf("usage: %s datafile\n", argv(0]);
exit{};

/¥ open the input file °/
if ((data fp = fopen{argvil|, "c")) == NULL)
{
printf("cannot open %s\n”, argvill);
exit(};

Jul

oy
-
I
)
oy

1988 Page 14 of ezample.chaos

example.chaos example.chaos
.anput_data
}
/“ read in the number of equations “/
fscanf{data fp, "%d ", num _equ);
/* read in the matriz 4 </
for { =0 ; 1 < ‘mum_equ ; i==+)
{
for (j=0 ;] < ‘num_equ ;] +=)
{
fscanf(data fp, "%alf"&(c_ptr—>Af[l]))
}
}
/* read in the vector B */
for (1 =0 ;1 < *num_equ ; i++)
{
fscanf(data _fp, "76lf" &(c_ptr—>B[i}});
}
/* read in the initial wvalue of the vector X */
for (1 =0; 1 < *num_equ ; i++)
{
fscanf(data_fp, "%6if",&(c_ptr—>X[i}});
}
/¥ initialize the done flags */
for (i =0 ;1 < *num_equ ; i++)
{
c_ptr—>done_flagli] = 0;
}
}
*
“* output_rils. . procedure to output the resulls
£
output rlts(num_equ, c_ptr) output«rlts
int num_equ;
struet chaos *c_ptr;

{

register int i, row, col;

fprintf(Ofd, "\n\mequation num
Forintf{Ofd "o

for (i=0; i < num_equ; i+-+)

fprintf(Ofd, " %d
fprintf(Ofd, "\n\zn");
fflush(Ofd);
fprintf{Ofd, "program statistics\a");
fprintf(Ofd, "——————m \n\n");
fprintf(Ofd, "number of hosts
forintf{Ofd, "number of processes
fprx:zt:t

fprintf{Ofd, "degree of precision
fprintf(Ofd, "\n");
fflush({Ofd);

(
i
{Ofd, "total number of steps
il
{

Jul 8 11:85 1986

%16.121\n", i+, c_ptr—>X]i]);

= %d\n", NUMHOSTS};

= %d\n", aum_equ);

= Z%d\a", Steps);

= %I\n" RLT PRECISION);

Page [5 of ezample.chaos

example.chaos example.chaos

/,ﬁ
“* BROADCAST VERSION OF THE CHAOTIC RELAXATION ALGORITHM

£ &
s this 1s the remote process
o X
“* remote process to calculate a new value for the equation sent

e from the master process

x €

“/ Carla Mowers and Isabelle Gerard — June 1988

#inelude <stdic.h>

#inelude <signalh>

#inelude " /teools/dpup /stc/bdet.h”

#inelude " /tools /dpup /src/dpup_userh”
#inelude " /tools/dpup /examples /dgrm /chaos Lh"

#define TIMES 2

extern int errao;

main(arge, argv) mam
int arge;

char *fargv;

{

struet chaos *c_ptr; /* pointer to the structure ‘

/* caontaining the data of the group */
ehar data[BUFSIZE[; /* buffer to send/receive data of */

* the group */
char var_flags[NUMVARS]; /* flags used to tell which data */

/¥ are going to be sent/received */
int sock; * socket to the master process =/
int result; * returned number of byfes sent or */

/* received */
int npum_equ; /* number of equations */
struet bd_id id; /* id of the broadcast group *
short id_index; /* indez of the current process in */

/* the broadcast group */
FILE *dfd,; /* file descriptor for debbuging £/

/" file "/
char dbg _file[50]; ‘ /¥ name of the debbuging file */
ashart done flag = 0; /* flag set to tell local process */

* {3 done or not ¥/
int proc_aum; /% number of the current process */
double sum; /* to compute the new value of </

/* Xfproc_num/ </
double diff; /% difference between new and £/

/* previous value of X[proc_num/ */
statie int counter = 0; /* consecutive times where the £/

/% difference between the new and ¥/

/* the previous value of Yfproc_num/*/

/* was less than RLT PRECISION </

register short i{j;

/* set up communication channel with the master process */
sock = dp rmt_setup (&arge, argv);

if (sock < 0)

{
printf{"remote: dp_rmt_setup error\n"};
dp_startus{);
dp _rmt_exit();

Jul 8 11:35 1985 Page 16 of ezample.chaos

example.chaos example.chaos

...mamn
c_ptr = (struet chaos 7 data;

&

“* initialize the number of equations passed as an argument by the
** master
“/

aum_equ = atoi(argv{l]);

** initiglize number of the current process passed as an argument
““ by the master process
“/

proc_aum = atoi(argv(2});

/* read the id of the broadcast group from the master process */
result = dp _read(sock, (ehar ¢} &id, sizeoflid), 1);

if (result != siseof{id))

printf("remote: read error: errno = %d\n”", errno);
dp_rmt_exit{);
y
/% establish a connection with the local broadcast server */
result = be_open();

if (result < Q)
{
printf("remote: be_open error\n");
result = bc_close();
printf("slave([5d]: be_close = %d\n",proc_num,result);
dp_status{);
dp _rmt_exit();

}

/* join the broadcast group */
id_index = be_join_grp(&id);

if (id_index < 0)

) printf{"remote: be_join_grp error\n”);
dp _status();

result = be close();
printf{"slave[%d]: be _close = %d\n",proc_num,result);

dp_rmt_exit();

}
/‘*

“* initialize the var flags to receive Afproc_numff],Bfproc_num|
“* and X

</

for (i=0; | < NUMVARS; i++)

{

}

var _flags{proc_aumj = I;
var_flagsMAXNPROC + proc_numj = 1;
‘* Tecetve the initial values of X °/
for(j = 0;] < aum equ;]+-)

{

s
i

var flagsfij = 0;

var_flags{2 < MAXNPROC =+ =1

Page 17 of example.chaos

(5%

Jul 8 11:55 198

example.chaos example.chaos

...main

/% receive the data */
result = bc_receive(id _index, (short) BLOCK _ON_DATA, data, var_flags);

done flag = 0;
c_ptr—>done_flaglproc_num| = 0;

while (done_flag == 0)
/© loop until dane flag ==

{

L [stopping condition is reached) °/

/¢ compute the new value of X/proc_num/ . sum */
sum = 0.0;

for (| = 0 ;] < num_equ ; j++)

{

if (] != proc_aum)

sum += c_pbr—>A[proc_aum|fjj *

c_ptr—>Xjjj;
}
}
sum = (c_ptr—>B{proc_num| — sum) / c_ptr—>Afproc_aum|[proc_aumf;
/#
** check the stopping condition : it is reached, if the
*x

difference between new and previous value of X[prec_num/
#* {5 less or equal to RLT_PRECISION mare than TIMES

** consecutive fimes
*/
diff = sum — c_ptr—>X[proc_num|;

if (diff < 0)

{
'

if (diff <= RLT_PRECISION)
{

diff *= -1;

counter++; ‘
if (counter == TIMES)
/¥ stopping condition reached */

done_flag = I;
c_ptr—>done_flagproc _num| = 1;

}

elae

{
}

/* update the X[proc_num] with the new value */
c_ptr—>X[proc_num| = sum;

counter = 0;

/* set the var_flags to send X[proc_num| and the done—flag “/
for (i=0; | < NUMVARS; i++)

var_flagsfif = 0;

}
var flagsi2 < MAXNPROC + proc_aum| = I;

a
3
g
=

var_flags[3 * MAXNPROC + proc_aum| = L;

/* send X[proc_num/ and the done flag */
result = bc_send(id _index, var_flags, data);

Jul 3 11:25 1986 Page 18 of ezample.chaos

example.chaos example.chaos

...main

/* the process is done °/)
{
/* set the var _flags to send X/proc_num/ and °/
/" the done flag </
for (i=0; | < NUMVARS; i++)
{

}

var_flags’2 * MAXNPROC + proc_num]
var _flags: |

varﬂf[ags{ii = 0;

[
e

B
i3 MAXNPROC + proc_aoumj

|

for[i=0;i<‘l;i-§-f)
/© send uagain in case the packet was discarded */
/* by the local server of the master </

{

/< send X/proc_num/ and done_flagfproc_num/ */
result = be_send(id index, var_tlags, data);

break;
}

else
/" the pracess is not done */

*
£* initialize the var flags to receive the new values
** of X [except Xlproc_num|)
¥
for (i=0; i < NUMVARS; i++)
{

}

foc(j = 0; | < num_equ; j++)

{

var_flagsfi] = O;

if (] != proc_oum)
{
var_flags[2 © MAXNPROC + j] = L
y
}

/* recetve the data */
result = bec_receive(id _index, (short) ALL_REQ_DATA, data, var _flags);

}
} /* end of while °/
/* resign from the broadcast group */
result = bc_resign grp{id index);

printf("slave[%d] @ result of bc_resign_grp = %d\a",
proc _num, result);

* terminate connection with the broadcast server */
result = be close();
princf("slavel%d! : result of be close = “hd\a’,

proc num.cesuln);

dp rmt_exax();

Page (9 of ezample.chaos

Jul 3 11:35 1986

IINCTASSTFTED

SECURITY CLASSIFICATION OF THIS PAGE (When Dsta Entered) MASTER COPY - FOR REPRODUCTION PURPOSES
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVYT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMRBER
CS-CU-337- '
U-337-86 N/A N/A
4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED

DPUP: A Distributed Processing Utilities Package

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(Ss) B. CONTRACT OR GRANT NUMBER(s)
T. Gardner E. Nemeth
I. Gerard R. Schnabel DAAG-29-84-K~0140
C. Mowers
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS . 12. REPORT DATE
. July 1986
U. S. Army Research Office 7
Post Office Box 12211 13. NUMBER OF PAGES

arch Triangle Park. NC 27700 41
4. MONITORIRG AGENCY NAME & ADdRESS(II different from Controlling Office) 15. SECURITY CLASS. (of thia report)

Unclassified

18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

i8. DISTRIBUTION STATEMERNT (of thie Report)

Approved for public release; distribution unlimited.

i7. DISTRIBUTION STATEMENT (of the abstract entered in Biock 20, if different from Report)

NA

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are
those of the author(s) and should not be construed as an official

Department of the Army position, policy, or decision, unless so
designated bv other documentation.
19. KEY WORDS (Continue on reverae sida if necessary and identify by block number)

distributed computing; multiprocessing; network of computers

20. ABSTRACT (Continue em reverse side if neceswasy and idemntify by block numbes)

Attached

Bo , ﬁ::’:n 1473 eoition OF ¥ NOV 65 1S OBSOLETE UNCLASSTIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

